Tag: neuroblastoma

Scientists Discover a Better ALK Inhibitor to Treat Neuroblastoma

Originally published on Cornerstone, the CHOP Research Blog.

I edited this article based on a CHOP press release and an additional interview with the investigator.

Excerpt:

Pediatric cancer researchers at The Children’s Hospital of Philadelphia believe they have succeeded in their search for a powerful next-generation drug for neuroblastoma tumors with mutations in the anaplastic lymphoma kinase (ALK) gene associated with the cancer. Based on their preclinical findings, they are fast-tracking the launch of a clinical trial this year.

Usually appearing as a solid tumor in the chest or abdomen, neuroblastoma accounts for a disproportionate share of cancer deaths in children, despite many recent improvements in therapy.

The search for better ALK inhibitors originated when, in 2008, CHOP pediatric oncologist Yael Mossé, MD, and colleagues identified ALK mutations as a driver of most cases of rare, inherited neuroblastoma. Subsequent research showed that abnormal ALK changes drive approximately 14 percent of high-risk forms of neuroblastoma.

Based on this knowledge, scientists including Dr. Mossé in the multicenter Children’s Oncology Group were able to repurpose crizotinib, an ALK inhibitor already approved to treat adults with lung cancer, in clinical trials of children with neuroblastoma. But they found that different mutations within the ALK gene in neuroblastoma responded differently to crizotinib, and a mutation labelled F1174L was resistant to the drug.

Speeding Up Success with Precision Medicine Cancer Trial

Originally published in Bench to Bedside, the CHOP Research monthly publication

I composed this original article based on an interview with the investigator, following up on a CHOP press release.

Excerpt:

An innovative new clinical trial launching this year at The Children’s Hospital of Philadelphia may not only help patients who have no further proven treatment options for neuroblastoma, a high-risk cancer, but may also be a model for how precision medicine clinical trials can spur better and faster cancer therapy discoveries in the future.

The trial uses a dynamic design, which allows researchers to quickly translate findings from the lab based on the evolving individual characteristics of each patient’s tumor. It is the first time such a strategy is being applied to a prospective clinical trial in children with cancer. Known as the NExt-generation Personalized NEuroblastoma THErapy (NEPENTHE) trial, it is moving forward with a new $1.5 million grant from Alex’s Lemonade Stand Foundation (ALSF), announced in December.

“The novelty of this trial could be viewed on numerous levels,” said principal investigator Yael Mossé, MD, a CHOP pediatric oncologist and assistant professor at the Perelman School of Medicine at the University of Pennsylvania. “It’s based on rigorous preclinical data, understanding the molecular drivers that are important in this disease. It’s combining multiple novel drugs, not just one at a time. And it’s bringing that to the clinic and assigning patients to therapy based on what their tumor genetics are teaching us at the time that they meet us with relapsed or refractory cancer.”

Cornering a Cancer-Connected Autoimmune Disease

Originally published in Bench to Bedside, the CHOP Research monthly publication

I composed this original article and related behind-the-science human interest blog post based on interviews with the investigators.

Excerpt:

It is certainly not good news for children to get a double whammy of both cancer and autoimmune disease. Unfortunately, for a small subset of children with neuroblastoma, a common childhood cancer of the peripheral nervous system, an extremely rare autoimmune disorder called OpsoclonusMyoclonus Ataxia Syndrome (OMAS) comes along for the ride. The overactive immune response is believed to be triggered by the cancer.

But there is a twist.

“Patients with neuroblastoma who have OMAS have better outcomes, in terms of their tumor, than patients with neuroblastoma who don’t have OMAS,” said Jessica Panzer, MD, PhD, a pediatric neurologist and attending physician at The Children’s Hospital of Philadelphia who is studying this disease.

That pattern leads Dr. Panzer and other researchers to wonder: Is it possible that OMAS is a case of the body’s immune system finding a successful defense against cancer (but taking it a little too far against healthy cells)? And could we learn safe ways to harness its ability to help more children with neuroblastoma, or even other cancers?

These are among many long-term questions on the distant horizon for researchers who study this little-understood autoimmune disease. First, they need to understand the basics.

Dancing Eyes Brought a Research Team Together

Originally published on Cornerstone, the CHOP Research Blog

I composed this story as a complement to the above article highlighting the science of this team’s collaboration.

Excerpt:

It started at the end of a long day. Jessica Panzer, MD, PhD, then just a few weeks into her pediatric neurology residency at The Children’s Hospital of Philadelphia, was about to go home. Instead, she was called to the emergency room to consult on a 3-year-old girl who could barely walk. What happened then opened up new questions in her budding research career.

Not long after that, Miriam Rosenberg, PhD, started on a convergent path when her own 19-month-old daughter got sick. The toddler first developed problems with excessive drooling and stumbling while she walked. Within a few months, she had a sudden onset of more severe symptoms — unable to walk, severe tremor, unable to feed herself. Dr. Rosenberg and her husband brought their child to the nearest hospital.

Young Investigator Seeks a Target for Targeted Neuroblastoma Therapy

Originally published on Cornerstone, the CHOP Research Blog

I composed this original blog post based on an interview with the investigator and took the accompanying photo.

Excerpt:

It is scary to learn your child has neuroblastoma, a tumor of the peripheral nervous system that is the most common cancer in infants. It is scarier still when you get test results that show your child is in the half of neuroblastoma patients whose cancer is very aggressive and high-risk. Doctors routinely test neuroblastoma tumor genes to see if there are multiple extra copies of the gene MYCN. Positive results come with that high-risk prognosis. Amplified MYCN occurs in about half of all high-risk neuroblastoma cases.

Currently, there is not a good answer for parents facing this scenario. Doctors have known about the association between amplified MYCN and poor neuroblastoma outcomes for more than 30 years, but that knowledge has not yet translated into improved, targeted treatments.

One researcher who is now trying to make the start of that translation is Robyn Sussman, PhD, a postdoctoral fellow at The Children’s Hospital of Philadelphia. Dr. Sussman has just received a two-year Young Investigator grant from the Alex’s Lemonade Stand Foundation (ALSF) to pursue this line of research. This week, she is joining 50 researchers from across the country at the third ALSF Young Investigator Summit to learn from and engage with leading researchers in pediatric oncology.