Tag: cancer

Speeding Up Success with Precision Medicine Cancer Trial

Originally published in Bench to Bedside, the CHOP Research monthly publication

I composed this original article based on an interview with the investigator, following up on a CHOP press release.

Excerpt:

An innovative new clinical trial launching this year at The Children’s Hospital of Philadelphia may not only help patients who have no further proven treatment options for neuroblastoma, a high-risk cancer, but may also be a model for how precision medicine clinical trials can spur better and faster cancer therapy discoveries in the future.

The trial uses a dynamic design, which allows researchers to quickly translate findings from the lab based on the evolving individual characteristics of each patient’s tumor. It is the first time such a strategy is being applied to a prospective clinical trial in children with cancer. Known as the NExt-generation Personalized NEuroblastoma THErapy (NEPENTHE) trial, it is moving forward with a new $1.5 million grant from Alex’s Lemonade Stand Foundation (ALSF), announced in December.

“The novelty of this trial could be viewed on numerous levels,” said principal investigator Yael Mossé, MD, a CHOP pediatric oncologist and assistant professor at the Perelman School of Medicine at the University of Pennsylvania. “It’s based on rigorous preclinical data, understanding the molecular drivers that are important in this disease. It’s combining multiple novel drugs, not just one at a time. And it’s bringing that to the clinic and assigning patients to therapy based on what their tumor genetics are teaching us at the time that they meet us with relapsed or refractory cancer.”

Possible ‘Central Hub’ Proteins Found in Cancer Cell Growth

Originally published on Cornerstone, the CHOP Research Blog.

I composed this original article based on an interview with the investigator.

Excerpt:

A study from researchers at The Children’s Hospital of Philadelphia may add new lines to the textbook description of how cancer cells divide uncontrollably and develop into tumors. Their study, published in Nature Communications, identifies and describes an epigenetic mechanism in cancer cells that amplifies the expression of many genes and could be a central hub in cancer cell growth. Unlike most molecular cancer discoveries that advance knowledge of the disease by dividing it into narrower subtypes, this finding could directly apply to multiple cancer types.

“We know the signaling pathway known as the Rb pathway is altered in pretty much every single tumor that you can find in clinical settings,” said Patrick Viatour, PharmD, PhD, the study’s senior author, an investigator at CHOP and assistant professor of Pathology and Laboratory Medicine at the Perelman School of Medicine at the University of Pennsylvania.

Dr. Viatour’s research focuses on a family of proteins in the Rb pathway, called E2f transcription factors, that are an important part of the process of cell division — the cell cycle of reproduction that is carefully controlled in healthy cells but proceeds out of control when cancer cells proliferate. Transcription factors, including the E2f family of proteins, bind to specific target regions of DNA and help to either activate or deactivate expression of certain genes.

As a result of Rb pathway alteration, E2f factors are steadily turned on in cancer. In the study primarily using a mouse model of liver cancer, Dr. Viatour and his team found that E2f1 progressively accumulates as cancer progresses.

Latest Findings Add Insight Into Targeted Cancer Immunotherapy

Originally published on Cornerstone, the CHOP Research Blog.

I composed this original article based on the presentation abstracts for the highlighted scientific presentation, followed by email contact with the investigators.

Excerpt:

Researchers at The Children’s Hospital of Philadelphia reported their latest results from their studies of an investigational personalized cell therapy for a highly aggressive form of acute lymphoblastic leukemia (ALL). Developed by researchers at the University of Pennsylvania and CHOP, the therapy is made from patients’ own immune T cells, which are extracted and bioengineered into CTL019 cells that potentially seek and destroy leukemia cells.

Among the findings, the team reported that 93 percent of pediatric patients reached remission after receiving the therapy for relapsed/refractory ALL. ALL is the most common childhood cancer, with limited effective treatment options for the approximately 10 to15 percent of patients who relapse after standard therapies.

The research team presented these results and more at the American Society of Hematology (ASH) annual meeting in Orlando. They reflect the CHOP-Penn team’s continued process of discovery about the investigational therapy, which is now part of clinical trials active at 15 sites globally, including CHOP.

Cornering a Cancer-Connected Autoimmune Disease

Originally published in Bench to Bedside, the CHOP Research monthly publication

I composed this original article and related behind-the-science human interest blog post based on interviews with the investigators.

Excerpt:

It is certainly not good news for children to get a double whammy of both cancer and autoimmune disease. Unfortunately, for a small subset of children with neuroblastoma, a common childhood cancer of the peripheral nervous system, an extremely rare autoimmune disorder called OpsoclonusMyoclonus Ataxia Syndrome (OMAS) comes along for the ride. The overactive immune response is believed to be triggered by the cancer.

But there is a twist.

“Patients with neuroblastoma who have OMAS have better outcomes, in terms of their tumor, than patients with neuroblastoma who don’t have OMAS,” said Jessica Panzer, MD, PhD, a pediatric neurologist and attending physician at The Children’s Hospital of Philadelphia who is studying this disease.

That pattern leads Dr. Panzer and other researchers to wonder: Is it possible that OMAS is a case of the body’s immune system finding a successful defense against cancer (but taking it a little too far against healthy cells)? And could we learn safe ways to harness its ability to help more children with neuroblastoma, or even other cancers?

These are among many long-term questions on the distant horizon for researchers who study this little-understood autoimmune disease. First, they need to understand the basics.

Dancing Eyes Brought a Research Team Together

Originally published on Cornerstone, the CHOP Research Blog

I composed this story as a complement to the above article highlighting the science of this team’s collaboration.

Excerpt:

It started at the end of a long day. Jessica Panzer, MD, PhD, then just a few weeks into her pediatric neurology residency at The Children’s Hospital of Philadelphia, was about to go home. Instead, she was called to the emergency room to consult on a 3-year-old girl who could barely walk. What happened then opened up new questions in her budding research career.

Not long after that, Miriam Rosenberg, PhD, started on a convergent path when her own 19-month-old daughter got sick. The toddler first developed problems with excessive drooling and stumbling while she walked. Within a few months, she had a sudden onset of more severe symptoms — unable to walk, severe tremor, unable to feed herself. Dr. Rosenberg and her husband brought their child to the nearest hospital.

Young Investigator Seeks a Target for Targeted Neuroblastoma Therapy

Originally published on Cornerstone, the CHOP Research Blog

I composed this original blog post based on an interview with the investigator and took the accompanying photo.

Excerpt:

It is scary to learn your child has neuroblastoma, a tumor of the peripheral nervous system that is the most common cancer in infants. It is scarier still when you get test results that show your child is in the half of neuroblastoma patients whose cancer is very aggressive and high-risk. Doctors routinely test neuroblastoma tumor genes to see if there are multiple extra copies of the gene MYCN. Positive results come with that high-risk prognosis. Amplified MYCN occurs in about half of all high-risk neuroblastoma cases.

Currently, there is not a good answer for parents facing this scenario. Doctors have known about the association between amplified MYCN and poor neuroblastoma outcomes for more than 30 years, but that knowledge has not yet translated into improved, targeted treatments.

One researcher who is now trying to make the start of that translation is Robyn Sussman, PhD, a postdoctoral fellow at The Children’s Hospital of Philadelphia. Dr. Sussman has just received a two-year Young Investigator grant from the Alex’s Lemonade Stand Foundation (ALSF) to pursue this line of research. This week, she is joining 50 researchers from across the country at the third ALSF Young Investigator Summit to learn from and engage with leading researchers in pediatric oncology.